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Abstract. We analyse a possible connection between different quantisation schemes and 
the Bargman-Segal realisation of the Heisenberg algebra H. We show that only a one- 
parameter subfamily of the family of Heisenberg algebras H, subduced from H O H  can 
be rewritten in the Bargman-Segal form. 

1. Introduction 

One of the most interesting approaches to the quantisation problem is that which 
formulates itself on the phase space of the physical system under consideration. Such 
a formulation is based on the observation made by several authors [l-71 who have 
suggested a quantisation mapping adhering to the form 

f =  ix,+f-paf/ap - qaf/aq (1.1) 

where Xf is a tangent vector field on phase space associated with the function .f for 
some vector field X [8,9]. 

Specific realisations of quantisation mapping resulting from the general prescription 
given by (1.1) are the following. 

(i)  Van Hove's [ 1,7] mapping 

a Q = q + i -  
aP 

* a P=-i-  
aq 

or its improved form [lo] 

* a 
P = -2i -. 

a4 

§ Supponed by CPBP 01.09. 

(1.2a) 

(1.26) 

(1.3a) 

(1.36) 
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(ii) The symmetric quantisation mapping [4-6, 101 

(1.4b) 

There are various reasons why the above prescriptions might be advantageous with 
respect to the conventional quantisation mapping (see [l-101 and also Chernoff [ l  I]). 

The aim of the present paper is to find a specific relation between possible 
quantisation schemes and  the Bargmann-Segal [ 12, 131 realisation (hereafter referred 
to as BS) of the Heisenberg algebra. As is well known the last is closely connected to 
the coherent states [14, 1.51. 

Our paper is organised as follows. In  D 2 we investigate the Heisenberg subalgebras 
H, and  H, rotated by a symplectic transformation. We relate our findings to the 
irreducible subspaces connected with the eigenvalues of N q .  In D 3 we connect the 
realisation of H, with the BS one. 

2. Embeddings of H in H O H  and the representation problem 

Let Z denote the Hilbert space of square-integrable functions P(q ,  p )  of q and p with 
measure d p O  = dqdp  which are defined on the phase space R'. Following the famous 
von Neumann theorem [16] the space 2 is the underlying space for irreducible 
representation of the Heisenberg algebra H generated by the multiplication operations 
by q a n d p  by differentiation -ia/aq and -ia/ap and  by identity. In  H we can distinguish 
two subalgebras generated by (4, -ia/aq, I )  and (p ,  -ia/ap, I),  respectively, with a 
common one-dimensional subspace spanned by the identity I. It is obvious that the 
above decomposition of the algebra H is not unique: we can go to another set of 
generators by a symplectic transformation s2 E Sp(2; R )  

where 

flTJR = J 

R * = f l  

and  

( 2 . 2 a )  

( 2 . 2 6 )  

(2.3) 

is the symplectic matrix. 
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The pair (0, 6, I )  and ( i j ,  b, I )  now generate two Heisenberg algebras H, and 
H,, respectively. Each symplectic transformation 0 E Sp(2; R )  can be decomposed 
into two parts; one part which leaves invariant the subalgebras spaces (it changes the 
basis within subalgebras only) and the other part which non-trivially mixes these 
subspaces. The former one forms the stability group of a given subalgebra and is given 
by the evident condition 

( I  - rI)RorI = 0 (2.4) 

where no€ Go,  the stability subgroup (Got Sp (2; R ) ) ,  I is the identity matrix, 

projects on the upper subspace corresponding 
The condition (2.4) can be solved immediately 

no=(". 0 n- 0 )  

to H, and I 2  is the 2 x 2  unit matrix. 
and we obtain as a result 

where 0, are 2 x 2 real matrices with det 0, = 1, i.e. 

no€ Sp(1; R )  x Sp(1; R )  = SL(2; R )  x SL(2; R )  =Go. (2.7) 

Now the essentially different choices of the subalgebra, say H,, are parametrised by 
points of the quotient space [17,18] Sp(2; R ) / S p ( l ;  R )  xSp(1;  R ) .  In order to obtain 
an explicit parametrisation of the above coset space, let us note that the elements 
outside the Lie algebra of the stability subgroup take the form 

where 

f f 2 = ( i  0 -i o )  
( 2 . 8 ~ )  

is the Pauli matrix and w is an arbitrary 2 x 2 real matrix. Consequently the correspond- 
ing group elements are 

where the real parameters CY, p, y, 6, E satisfy the relation 

c y 2 - ( p E  + y 6 )  = 1. (2.10) 

Note that the elements W and -'a belong to the same coset because * :€Go .  
Therefore, to get a global homeomorphy between the coset space Sp(2; R)/Sp(  1; R )  x 
Sp( 1; R )  and the set { W }  we must demand cy 3 0. Geometrically the considered quotient 
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XI 2 0 0 0 0  
0 - 1  0 0 1 

x4 0 0 1 1 0  
x5 0 1 0 0 1  

1 
2 

- x 3 - = -  x2 -o 0 - 1  1 o- 

- -  - - 

space is the one-sheet hyperboloid H3.2 (dim H3,2 = 4); this yields readily if we pass 
to coordinates xl  , . . . , x5 defined as 

I] (2.11) 

In terms of these coordinates, the constraint (2.10) takes the form 

x:+ x:+ x: - x i -  x: = 1 (2.12) 

determining H3.2. 

We are led to the conclusion that 0 E Sp(2; R )  can be represented as follows: 

Q = f l , W  (2.13) 

with Ro and W given by (2.6) and (2.9), respectively. Therefore, the explicit form of 
(2.1) is 

(2. 4a 1 

Because we are interested in quantisation of a one-dimensional system we must 
subduce the representation of H acting on X to, say, H,. However the subduced 
representation of H ,  is in X highly reducible; irreducible subspaces are marked by 
eigenvalues of the occupation number operator for H,, namely by 

(2.15) 

In the following we restrict ourselves to the irreducible subspace connected with the 
eigenvalue zero of Nq. To do  this, we note first that the equation 

N,W% P)  = 0 (2.16) 

Nq = t(i - ip*)(ij + ip*). 

implies, via positive definiteness of the norm in X, that 

(4  + iP*)Wq, p )  = 0. (2.17) 

Therefore the explicit form of the projection equation (2.17), using (2.14a, b), is 

0 = {a [ (a  + ic) p + (d - ib)a/ap] + [ E  ( a  + ic) + S ( b  + id)]q 

- i [ r ( a  + ic) - P ( b  + id)ld/aqlWq, p )  ( 2 . 1 7 ~ )  

where a, b, c, d parametrise a-: 
a-=(. c d  b) 

with the constraint 

ad  - bc = 1. 

The general case will be considered in the next section. 

(2.18) 

(2.19) 
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3. Connection with the BS representation 

Now let us try to connect the realisation of H Q ( q  p, y, 6, E )  with the BS one. We 
remember first that in the BS representation case we have to deal with the Hilbert space 
of entire functions 4(z*)  of z*, Z E C ,  with the measure 

d p  =d2z  exp(-$lzJ2) (3.1) 

and with action of the annihilation and creation operators corresponding to the 
differentiation a/az* and multiplication by z* respectively. Therefore we should 
redefine 9 and d p o  as well as connect z with q and p as follows: 

*(q,  p) = exp(-tIz12)4(z*) ( 3 . 2 ~ )  

d p o  = d p  exp ( $ 1 ~ 1 ~ )  (3.2b) 

( 3 . 2 ~ )  z = - (q '+ip')  

where q' and p '  are appropriate linear combinations of q and p. Moreover, in the 
action on 4 ( z * )  

1 
v5 

A a  
Jz az* 
- ( o + i ~ ) = -  1 

1 - (o-ifi) = z*. a 
However the consistency between (2.17) and ( 3 . 2 ~ - e )  leads to the relations 

with 

a = - - (  1 d/Y 2YC ) 
+ fi b / y  2ya 

& = ( a  c d  b). 

(3.2d) 

(3.2e) 

(3.36) 

(3.3c) 

(3.4) 

Consequently, the explicit form of the base elements of the distinguished Heisenberg 
algebra H, is 

I d c  d a  a Q =  -- q+-p+i -  -+iyc-- 
2 7  a v 5 a p  aq 

A b a  b a  a 
2y Jz f i a p  aq 

P =  --q+-p+i- -+iya- 

(3.5a) 

(3.56) 

while the constraint ( 2 . 1 7 ~ )  for 9 (q,  p )  takes the form 

[(a +ic)(  p - i  y f i  d / d q )  - ( b  +id ) (  l/y&'q + id/dp)]Y(q, p )  = 0 (3.6) 
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with (3 .20)  as the solution and z given by 

(3.7) z = -- (d  +ib)q + (c+ia)p .  
Y f i  

From the above derivation we see that only the one-parameter subfamily of the 
Heisenberg algebra family H,( a, j3, y, 6, E ) ,  namely those corresponding to H,( 1/d, 
0, y, -1/2y, 0), can be connected with the BS realisation and consequently with the 
coherent-state description 

w q ,  P) = ( Z I W  (3.8) 

y = - d  a = 1 1 4  b = c = O  d = d  (3.9) 

where { l z ) }  is the set of coherent states. Note that for 

we obtain from ( 3 . 5 4  b) the symmetric form of 6 and @ 
os = fq + ia/ap 

FS = f p  - ia/aq. 

( 3 . 1 0 ~ )  

(3.10b) 

as well as 

1 
z =- (q +ip) .  (3.11) 

On the other handAit is very surprising that the van Hove and improved van Hove [ 101 
choice of @ and Q does not belong to the above subfamily and consequently cannot 
be rewritten in the BS form. 

d 

Now we investigate the general case, that is when (2.16) takes the form 

(N , -n )Wq,p )=O (3.12) 

with n Z 0. This equation is the projection equation on a subspace of 2 underlying 
an irreducible representation of H,. If eventually this representation of the Heisenberg 
algebra can be rewritten in the BS form, then in the action on Y (4, p) = Y’(z, z*)  the 
generators 

and 

( 3 . 1 3 ~ )  

(3.13 b)  

should have the form 

fz +alar* and Z* (3.14) 
respectively. 

On the other hand ( Nq - n), from construction, is a differential operator of degree 
two with respect to a/az and a/az*. Moreover Nq - n should commute with fz +a /az*  
and z*.  

However, a direct calculation shows that this holds only for the above-considered 
case n = 0. Therefore, for n > 0 no representation of H, (a, j3, y, 6, E )  in X related to 
the BS realisation. 
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