On the connection between quantisation schemes and coherent states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 222751
(http://iopscience.iop.org/0305-4470/22/14/023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:57

Please note that terms and conditions apply.

On the connection between quantisation schemes and coherent states

L C Papaloucas \dagger and J Rembieliński $\ddagger \S$
\dagger Institute of Mathematics, University of Athens, 10679 Athens, Greece
\ddagger Institute of Physics, University of Lódź, Nowotki 149/153, 90-236 Lódź, Poland

Received 28 October 1988

Abstract

We analyse a possible connection between different quantisation schemes and the Bargman-Segal realisation of the Heisenberg algebra H. We show that only a oneparameter subfamily of the family of Heisenberg algebras H_{Q} subduced from $\mathrm{H} \oplus \mathrm{H}$ can be rewritten in the Bargman-Segal form.

1. Introduction

One of the most interesting approaches to the quantisation problem is that which formulates itself on the phase space of the physical system under consideration. Such a formulation is based on the observation made by several authors [1-7] who have suggested a quantisation mapping adhering to the form

$$
\begin{equation*}
\hat{f}=\mathrm{i} X_{f}+f-p \partial f / \partial p-q \partial f / \partial q \tag{1.1}
\end{equation*}
$$

where X_{f} is a tangent vector field on phase space associated with the function f for some vector field $X[8,9]$.

Specific realisations of quantisation mapping resulting from the general prescription given by (1.1) are the following.
(i) Van Hove's [1, 7] mapping

$$
\begin{align*}
& \hat{Q}=q+\mathrm{i} \frac{\partial}{\partial p} \tag{1.2a}\\
& \hat{P}=-\mathrm{i} \frac{\partial}{\partial q} \tag{1.2b}
\end{align*}
$$

or its improved form [10]

$$
\begin{align*}
& \hat{Q}=\frac{1}{2} q+\mathrm{i} \frac{\partial}{\partial p} \tag{1.3a}\\
& \hat{P}=-2 \mathrm{i} \frac{\partial}{\partial q} . \tag{1.3b}
\end{align*}
$$

(ii) The symmetric quantisation mapping [4-6, 10]

$$
\begin{align*}
& \hat{Q}=\mathrm{i} \frac{\partial}{\partial p}+\frac{1}{2} q \tag{1.4a}\\
& \hat{P}=-\mathrm{i} \frac{\partial}{\partial q}+\frac{1}{2} p \tag{1.4b}
\end{align*}
$$

There are various reasons why the above prescriptions might be advantageous with respect to the conventional quantisation mapping (see [1-10] and also Chernoff [11]).

The aim of the present paper is to find a specific relation between possible quantisation schemes and the Bargmann-Segal [12,13] realisation (hereafter referred to as Bs) of the Heisenberg algebra. As is well known the last is closely connected to the coherent states [14, 15].

Our paper is organised as follows. In $\S 2$ we investigate the Heisenberg subalgebras H_{Q} and H_{q} rotated by a symplectic transformation. We relate our findings to the irreducible subspaces connected with the eigenvalues of N_{q}. In $\S 3$ we connect the realisation of H_{Q} with the bs one.

2. Embeddings of \mathbf{H} in $\mathbf{H} \oplus \mathbf{H}$ and the representation problem

Let \mathscr{H} denote the Hilbert space of square-integrable functions $\Psi(q, p)$ of q and p with measure $\mathrm{d} \mu_{0}=\mathrm{d} q \mathrm{~d} p$ which are defined on the phase space \mathbb{R}^{2}. Following the famous von Neumann theorem [16] the space \mathscr{H} is the underlying space for irreducible representation of the Heisenberg algebra H generated by the multiplication operations by q and p by differentiation $-\mathrm{i} \partial / \partial q$ and $-\mathrm{i} \partial / \partial p$ and by identity. In H we can distinguish two subalgebras generated by $(q,-\mathrm{i} \partial / \partial q, I)$ and ($p,-\mathrm{i} \partial / \partial p, I$), respectively, with a common one-dimensional subspace spanned by the identity I. It is obvious that the above decomposition of the algebra H is not unique: we can go to another set of generators by a symplectic transformation $\Omega \in \operatorname{Sp}(2 ; R)$

$$
\left(\begin{array}{l}
\hat{Q} \tag{2.1}\\
\hat{p} \\
\hat{q} \\
\hat{p}
\end{array}\right)=\Omega\left(\begin{array}{c}
q \\
-\mathrm{i} \partial / \partial q \\
p \\
-\mathrm{i} \partial / \partial p
\end{array}\right)
$$

where

$$
\begin{align*}
& \Omega^{\mathrm{T}} J \Omega=J \tag{2.2a}\\
& \Omega^{*}=\Omega \tag{2.2b}
\end{align*}
$$

and

$$
J=\left(\begin{array}{rr|rr}
0 & -1 & 0 & 0 \tag{2.3}\\
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

is the symplectic matrix.

The pair (\hat{Q}, \hat{P}, I) and (\hat{q}, \hat{p}, I) now generate two Heisenberg algebras H_{Q} and H_{q}, respectively. Each symplectic transformation $\Omega \in \mathrm{Sp}(2 ; R)$ can be decomposed into two parts; one part which leaves invariant the subalgebras spaces (it changes the basis within subalgebras only) and the other part which non-trivially mixes these subspaces. The former one forms the stability group of a given subalgebra and is given by the evident condition

$$
\begin{equation*}
(I-\Pi) \Omega_{0} \Pi=0 \tag{2.4}
\end{equation*}
$$

where $\Omega_{0} \in \mathrm{G}_{0}$, the stability subgroup $\left(\mathrm{G}_{0} \subset \mathrm{Sp}(2 ; R)\right), I$ is the identity matrix,

$$
\Pi=\left(\begin{array}{cc}
I_{2} & 0 \tag{2.5}\\
0 & 0
\end{array}\right)
$$

projects on the upper subspace corresponding to H_{Q} and I_{2} is the 2×2 unit matrix. The condition (2.4) can be solved immediately and we obtain as a result

$$
\Omega_{0}=\left(\begin{array}{cc}
\Omega_{+} & 0 \tag{2.6}\\
0 & \Omega_{-}
\end{array}\right)
$$

where $\Omega_{ \pm}$are 2×2 real matrices with $\operatorname{det} \Omega_{ \pm}=1$, i.e.

$$
\begin{equation*}
\Omega_{0} \in \operatorname{Sp}(1 ; R) \times \mathrm{Sp}(1 ; R)=\mathrm{SL}(2 ; R) \times \mathrm{SL}(2 ; R)=\mathrm{G}_{0} . \tag{2.7}
\end{equation*}
$$

Now the essentially different choices of the subalgebra, say H_{Q}, are parametrised by points of the quotient space $[17,18] \operatorname{Sp}(2 ; R) / \operatorname{Sp}(1 ; R) \times \operatorname{Sp}(1 ; R)$. In order to obtain an explicit parametrisation of the above coset space, let us note that the elements outside the Lie algebra of the stability subgroup take the form

$$
\left(\begin{array}{cc}
0 & -\sigma_{2} \omega^{\mathrm{\top}} \sigma_{2} \tag{2.8}\\
\omega & 0
\end{array}\right)
$$

where

$$
\sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \tag{2.8a}\\
\mathrm{i} & 0
\end{array}\right)
$$

is the Pauli matrix and ω is an arbitrary 2×2 real matrix. Consequently the corresponding group elements are

$$
W=\left(\begin{array}{rr|rr}
\alpha & 0 & \beta & \gamma \tag{2.9}\\
0 & \alpha & \delta & -\varepsilon \\
\hline \varepsilon & \gamma & \alpha & 0 \\
\delta & -\beta & 0 & \alpha
\end{array}\right)
$$

where the real parameters $\alpha, \beta, \gamma, \delta, \varepsilon$ satisfy the relation

$$
\begin{equation*}
\alpha^{2}-(\beta \varepsilon+\gamma \delta)=1 . \tag{2.10}
\end{equation*}
$$

Note that the elements W and $-W$ belong to the same coset because $\pm I \in \mathrm{G}_{0}$. Therefore, to get a global homeomorphy between the coset space $\operatorname{Sp}(2 ; R) / \operatorname{Sp}(1 ; R) \times$ $\mathrm{Sp}(1 ; R)$ and the set $\{W\}$ we must demand $\alpha \geqslant 0$. Geometrically the considered quotient
space is the one-sheet hyperboloid $H_{3,2}\left(\operatorname{dim} H_{3,2}=4\right)$; this yields readily if we pass to coordinates x_{1}, \ldots, x_{5} defined as

$$
\left[\begin{array}{l}
x_{1} \tag{2.11}\\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta \\
\varepsilon
\end{array}\right)
$$

In terms of these coordinates, the constraint (2.10) takes the form

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}-x_{5}^{2}=1 \tag{2.12}
\end{equation*}
$$

determining $H_{3,2}$.
We are led to the conclusion that $\Omega \in \operatorname{Sp}(2 ; R)$ can be represented as follows:

$$
\begin{equation*}
\Omega=\Omega_{0} W \tag{2.13}
\end{equation*}
$$

with Ω_{0} and W given by (2.6) and (2.9), respectively. Therefore, the explicit form of (2.1) is

$$
\begin{align*}
& \binom{\hat{Q}}{\hat{P}}=\Omega_{+}\left[\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right)\binom{q}{-\mathrm{i} \partial / \partial q}+\left(\begin{array}{cc}
\beta & \gamma \\
\delta & -\varepsilon
\end{array}\right)\binom{p}{-\mathrm{i} \partial / \partial p}\right] \tag{2.14a}\\
& \binom{\hat{q}}{\hat{p}}=\Omega_{-}\left[\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right)\binom{p}{-\mathrm{i} \partial / \partial p}+\left(\begin{array}{cc}
\varepsilon & \gamma \\
\delta & -\beta
\end{array}\right)\binom{q}{-\mathrm{i} \partial / \partial q}\right] . \tag{2.14b}
\end{align*}
$$

Because we are interested in quantisation of a one-dimensional system we must subduce the representation of H acting on \mathscr{H} to, say, H_{Q}. However the subduced representation of H_{Q} is in \mathscr{H} highly reducible; irreducible subspaces are marked by eigenvalues of the occupation number operator for H_{q}, namely by

$$
\begin{equation*}
N_{q}=\frac{1}{2}(\hat{q}-\mathrm{i} \hat{p})(\hat{q}+\mathrm{i} \hat{p}) \tag{2.15}
\end{equation*}
$$

In the following we restrict ourselves to the irreducible subspace connected with the eigenvalue zero of N_{q}. To do this, we note first that the equation

$$
\begin{equation*}
N_{q} \Psi(q, p)=0 \tag{2.16}
\end{equation*}
$$

implies, via positive definiteness of the norm in \mathscr{H}, that

$$
\begin{equation*}
(\hat{q}+\mathrm{i} \hat{p}) \Psi(q, p)=0 \tag{2.17}
\end{equation*}
$$

Therefore the explicit form of the projection equation (2.17), using (2.14a,b), is

$$
\begin{gather*}
0=\{\alpha[(a+\mathrm{i} c) p+(d-\mathrm{i} b) \partial / \partial p]+[\varepsilon(a+\mathrm{i} c)+\delta(b+\mathrm{i} d)] q \\
-\mathrm{i}[\gamma(a+\mathrm{i} c)-\beta(b+\mathrm{i} d)] \partial / \partial q\} \Psi(q, p) \tag{2.17a}
\end{gather*}
$$

where a, b, c, d parametrise Ω_{-}:

$$
\Omega_{-}=\left(\begin{array}{ll}
a & b \tag{2.18}\\
c & d
\end{array}\right)
$$

with the constraint

$$
\begin{equation*}
a d-b c=1 \tag{2.19}
\end{equation*}
$$

The general case will be considered in the next section.

3. Connection with the bs representation

Now let us try to connect the realisation of $\mathrm{H}_{Q}(\alpha, \beta, \gamma, \delta, \varepsilon)$ with the bs one. We remember first that in the bs representation case we have to deal with the Hilbert space of entire functions $\phi\left(z^{*}\right)$ of $z^{*}, z \in \mathbb{C}$, with the measure

$$
\begin{equation*}
\mathrm{d} \mu=\mathrm{d}^{2} z \exp \left(-\frac{1}{4}|z|^{2}\right) \tag{3.1}
\end{equation*}
$$

and with action of the annihilation and creation operators corresponding to the differentiation $\partial / \partial z^{*}$ and multiplication by z^{*} respectively. Therefore we should redefine Ψ and $\mathrm{d} \mu_{0}$ as well as connect z with q and p as follows:

$$
\begin{align*}
& \Psi(q, p)=\exp \left(-\frac{1}{2}|z|^{2}\right) \phi\left(z^{*}\right) \tag{3.2a}\\
& \mathrm{d} \mu_{0}=\mathrm{d} \mu \exp \left(\frac{1}{4}|z|^{2}\right) \tag{3.2b}\\
& z=\frac{1}{\sqrt{2}}\left(q^{\prime}+\mathrm{i} p^{\prime}\right) \tag{3.2c}
\end{align*}
$$

where q^{\prime} and p^{\prime} are appropriate linear combinations of q and p. Moreover, in the action on $\phi\left(z^{*}\right)$

$$
\begin{align*}
& \frac{1}{\sqrt{2}}(\hat{Q}+\mathrm{i} \hat{P})=\frac{\partial}{\partial z^{*}} \tag{3.2d}\\
& \frac{1}{\sqrt{2}}(\hat{Q}-\mathrm{i} \hat{P})=z^{*} \tag{3.2e}
\end{align*}
$$

However the consistency between (2.17) and (3.2a-e) leads to the relations

$$
\begin{align*}
& \alpha=\frac{1}{\sqrt{2}} \quad \beta=0 \quad \delta=-\frac{1}{2 \gamma} \quad \varepsilon=0 \tag{3.3a}\\
& \Omega_{+}=-\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
d / \gamma & 2 \gamma c \\
b / \gamma & 2 \gamma a
\end{array}\right) \tag{3.3b}\\
& \binom{q^{\prime}}{p^{\prime}}=\left(\begin{array}{cc}
-d / \gamma & \sqrt{2} \\
-b / \gamma & \sqrt{2}
\end{array}\right)\binom{q}{p} \tag{3.3c}
\end{align*}
$$

with

$$
\Omega_{-}=\left(\begin{array}{ll}
a & b \tag{3.4}\\
c & d
\end{array}\right)
$$

Consequently, the explicit form of the base elements of the distinguished Heisenberg algebra H_{Q} is

$$
\begin{align*}
& \hat{Q}=-\frac{d}{2 \gamma} q+\frac{c}{\sqrt{2}} p+\mathrm{i} \frac{d}{\sqrt{2}} \frac{\partial}{\partial p}+\mathrm{i} \gamma c \frac{\partial}{\partial q} \tag{3.5a}\\
& \hat{P}=-\frac{b}{2 \gamma} q+\frac{a}{\sqrt{2}} p+\mathrm{i} \frac{b}{\sqrt{2}} \frac{\partial}{\partial p}+\mathrm{i} \gamma a \frac{\partial}{\partial q} \tag{3.5b}
\end{align*}
$$

while the constraint (2.17a) for $\Psi(q, p)$ takes the form

$$
\begin{equation*}
[(a+\mathrm{i} c)(p-\mathrm{i} \gamma \sqrt{2} \partial / \partial q)-(b+\mathrm{i} d)(1 / \gamma \sqrt{2} q+\mathrm{i} \partial / \partial p)] \Psi(q, p)=0 \tag{3.6}
\end{equation*}
$$

with (3.2a) as the solution and z given by

$$
\begin{equation*}
z=-\frac{1}{\gamma \sqrt{2}}(d+\mathrm{i} b) q+(c+\mathrm{i} a) p \tag{3.7}
\end{equation*}
$$

From the above derivation we see that only the one-parameter subfamily of the Heisenberg algebra family $\mathrm{H}_{Q}(\alpha, \beta, \gamma, \delta, \varepsilon)$, namely those corresponding to $H_{Q}(1 / \sqrt{2}$, $0, \gamma,-1 / 2 \gamma, 0)$, can be connected with the bs realisation and consequently with the coherent-state description

$$
\begin{equation*}
\Psi(q, p)=\langle z \mid \Psi\rangle \tag{3.8}
\end{equation*}
$$

where $\{|z\rangle\}$ is the set of coherent states. Note that for

$$
\begin{equation*}
\gamma=-\sqrt{2} \quad a=1 / \sqrt{2} \quad b=c=0 \quad d=\sqrt{2} \tag{3.9}
\end{equation*}
$$

we obtain from (3.5a,b) the symmetric form of \hat{Q} and \hat{P}

$$
\begin{align*}
& \hat{Q}_{s}=\frac{1}{2} q+\mathrm{i} \partial / \partial p \tag{3.10a}\\
& \hat{P}_{s}=\frac{1}{2} p-\mathrm{i} \partial / \partial q \tag{3.10b}
\end{align*}
$$

as well as

$$
\begin{equation*}
z=\frac{1}{\sqrt{2}}(q+\mathrm{i} p) \tag{3.11}
\end{equation*}
$$

On the other hand it is very surprising that the van Hove and improved van Hove [10] choice of \hat{P} and \hat{Q} does not belong to the above subfamily and consequently cannot be rewritten in the ss form.

Now we investigate the general case, that is when (2.16) takes the form

$$
\begin{equation*}
\left(N_{q}-n\right) \Psi(q, p)=0 \tag{3.12}
\end{equation*}
$$

with $n \neq 0$. This equation is the projection equation on a subspace of \mathscr{H} underlying an irreducible representation of H_{Q}. If eventually this representation of the Heisenberg algebra can be rewritten in the bs form, then in the action on $\Psi(q, p)=\Psi^{\prime}\left(z, z^{*}\right)$ the generators

$$
\begin{equation*}
\frac{1}{\sqrt{2}}(\hat{Q}+\mathrm{i} \hat{P}) \tag{3.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\sqrt{2}}(\hat{Q}-i \hat{P}) \tag{3.13b}
\end{equation*}
$$

should have the form

$$
\begin{equation*}
\frac{1}{2} z+\partial / \partial z^{*} \quad \text { and } \quad z^{*} \tag{3.14}
\end{equation*}
$$

respectively.
On the other hand ($N_{q}-n$), from construction, is a differential operator of degree two with respect to $\partial / \partial z$ and $\partial / \partial z^{*}$. Moreover $N_{q}-n$ should commute with $\frac{1}{2} z+\partial / \partial z^{*}$ and z^{*}.

However, a direct calculation shows that this holds only for the above-considered case $n=0$. Therefore, for $n>0$ no representation of $\mathrm{H}_{Q}(\alpha, \beta, \gamma, \delta, \varepsilon)$ in \mathscr{H} related to the bS realisation.

References

[1] van Hove L 1951 Proc. R. Acad. Sci. Belg. 26317
[2] Segal I E 1960 J. Math. Phys. 1468
[3] Sourian J M 1970 Structure des Systemés Dynamiques (Paris: Dunod)
[4] Streater R F 1966 Commun. Math. Phys. 2354
[5] Berezin F A and Subin M A 1972 Colloq. Math. Soc. Janos Rolyai vol 5 (Amsterdam: North-Holland)
[6] George C and Prigogine I 1979 Physica 99A 369
[7] Prugovecki E 1982 Phys. Rev. Lett. 491065
[8] Joseph A 1970 Commun. Math. Phys. 17210
[9] Wollenberg l S 1967 Proc. Am. Math. Soc. 20315
[10] Ktorides C N and Papaloucas L C 1986 Prog. Theor. Phys. 75301
[11] Chernoff P R 1981 Hadronic J. 4479
[12] Bargmann V 1961 Commun. Pure Appl. Math. 14187
[13] Segal I E 1962 Illinois J. Math. 6500
[14] Klauder R J 1960 Ann. Phys., NY 11123
[15] Glauber J R 1963 Phys. Rev. 1312766
[16] von Neumann J 1955 Mathematical Foundations of Quantum Mechanics (Princeton, NJ: Princeton University Press)
[17] Barut A and Raczka R 1977 Theory of Group Representations and Applications (Warsaw: Polish Scientific Publishers)
[18] Helgason S 1978 Differential Geometry, Lie Groups and Symmetric Spaces (New York: Academic)

